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roots and the system is stable. Otherwise the system is un-
stable. The above steps exhaust all possibilities. A brief
discussion of these is given below.

Discussion

Test step 1 is trivial. The truth of test step 2 follows from
the decomposition Eq. (3) and the application of the well-
known condition for asymptotic stability to p(x) and s(z2).
Step 3 is well-known. Step 5a is again an application of the
necessary condition for asymptotic stability to s(y). Step
5b is an application of a theorem of Fuller.2 The method to
determine s(y) in step 4 and the recognition that its Hurwitz
determinants are identical to An_m are new and recent re-
sults.3-4 The proofs lie in the identification of the Hurwitz
determinants with the resultants and subresultants of the two
subpolynomials h(x*) and g(x*) of the characteristic poly-
nomial /(#). Although this identification was made inde-
pendently by the author,3 a literature search subsequently re-
vealed Fuller2 seems to be the first author to make this identi-
fication by going back to the almost forgotten early work of
Trudi. Householder4 also discussed this identification in con-
nection with the more general problem of a complex charac-
teristic polynomial using the theorems of Trudi and Netto.
Although Householder's work is not addressed directly to the
present problem, his result is applicable if one converts the
real polynomial f(x) to a complex polynomial w(z) by the
transformation x = iz. Finally it should be pointed out the
test steps outlined are essentially based on the Routh-Hur-
witz algorith. It is conceivable other equivalent algorithms
such as those suggested by Duffin5 may be used to advantage
in some of the intermediate steps.

Example

f(x) = x9 + 3z8 +

For this example,

h(x2) = 3x

+ -if*2 + x + 1

g(x*) = x8 + fz6 + 7x* + fa;2 ± 1
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An-1 = A8

Straightforward computations give

As = A6 = A4 = 0,

Ai = 3 > 0, A2 =

s(y = z2) = 1/2

3 23/2
1 9/2

h(y)

= 2 > 0, A3 = 2 > 0,

a6 + I*4 + I*2 + 1
An application of test step 5 shows the necessary and suffi-
cient criteria for the stability of a system with the character-
istic equation X6 + 6iZ4 + b2X2 + &s = 0 are 61 > 0, 62 > 0,
63 > 0, 6i2 - 362 > 0 and &2

2(V - 462) + 6i63(1862 - 46i2) -
2763

2 > 0. Obviously s(xz) given above satisfies these cri-
teria and the system Eq. (5) is stable, although not asymp-
totically stable. It is now straightforward to show that in-
deed f(x) = (x* + 3z2 + x + 1) • (x6 + |x4 + |o;2 + 1) and
the Hurwitz determinants of p(x) = x3 + 3z2 + x + 1
with Ai, A2, and As given above.
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Mean Curvature of a Deformed
Spherical Surface
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WHEN studying the equilibrium configuration of liquid
drops under the action of surface tension, it is necessary

to compute the mean curvature, #(0,$), at a given point on
the surface. The difference in pressure across the surface
of the drop, AP, is given by

Ap = aH = a/2(l/Ri + 1/R)

where Ri and R% are the principal radii of curvature at a point
on the surface. An expression for (l/R\ + 1/R*) is derived
in Landau and Lifschitz1 for the case of a surface given in
spherical coordinates as T/ (#,</>). This expression, however,
is a perturbation expansion about a sphere, good only to first
order. In order to obtain higher order expansions we derive
an exact analytical expression for the mean curvature using
techniques of Differential Geometry.2 Although useful in
engineering applications, this result appears not to have been
previously published.

Let the surface be given by the function i?(0,0) where 0,$
are the usual polar angles and rj the distance from the origin.
Then in Euclidean 3-space, the surface is represented by the
vector function:

= (77 sin0 sin0 cos0)

At a point on the surface there is a tangent plane spanned
by the two vectors

5X/c)0 i

and

= ([ry cos0 +
[T? cos0 +

e sin0] cos0,
sin0] cos0 — 77 sin0])

= ([no — 77 sin0,
7^ cos0])

A unit normal vector exists with respect to this plane.
Since by convention a sphere has positive curvature the unit
normal will be taken as pointing inwards, towards the center
of the sphere. Thus the unit normal is:

X3 = -(Xi X X2)/|Xi X X2|
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It can be shown that | Xi + X2
 2 = EG - F2, where

t f s E E X i - X i = 7?2 + V

FH= XrX2 = wit
GEEEE X2 X2 = T72sin20 + V

The second partial derivatives of X are also needed to
compute H. Let

as is conventional, the above expression is linearized to

sin20[—R2£ee sin0 — R2£e cos0 + 2R3 sin0 +
6#2f sin0] - R^w sin0/(# + f)(j

Expanding the denominator, this becomes

r f 1 5 / Kr\
2R* -4- fi/?2f — #2 J_L_ _

Xn ^s== 52X/d02, Xi2 ̂  52X/d0d0, X22 = d2X/d</>2

and let

Then
1 T l 1 "1 E-N - 2F-M + G-L

Explicitly we compute:

2H = ({v2 [2rj sin0 — (d/50)(?70 sin0)] + rie2 [277 sin0 — (c)/50)

1 *rn.

which is the expression

(77 cos0)]} sin20 -

sin0 50 \ d0/
[1 4f~| 2 2f

D4 P& 1 7? 7?2JTL rt _j it it

in Landau & Lifschitz.

72 + i?02)] sin0 — 77^2c)2/d02(77 sin0)})
,[W+^)sin^+Vl3 '2

For the case of a sphere, 77 = #, r?0 = 0, 770 = 0, this reduces
to H = 1/12, as expected. To recover the first order ex-
pression in Ref .2 , we represent 77 as a perturbation expansion,

= R + f (0,<£) e X 0(€2). Dropping the e explicitly,
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